
Runtime Process Insemination

Shawn “lattera” Webb
SoldierX

https://www.soldierx.com/

Tuesday, February 21, 12

Who Am I?
l Just another blogger

l 0xfeedface.org
l Professional Security Analyst
l Twelve-year C89 programmer
l Member of SoldierX, BinRev, and Hack3r
l Twitter: @lattera

Tuesday, February 21, 12

Disclaimers
l Opinions/views expressed here are mine, not

my employer’s
l Talk is semi-random

l Tied together at the end
l Almost nothing new explained

l Theory known
l New technique

l Presentation and tools only for educational
purposes

Tuesday, February 21, 12

Assumptions
l Linux? What's that?

l Concepts carry over to Windows and OSX
l Basic knowledge of C and 32bit Linux memory

management
l Ability and desire to think abstractly
l Non-modified memory layout (NO grsec/pax)

Tuesday, February 21, 12

History
l CGI/Web App vulnerabilities

l Needed connect-back shellcode
l Needed reliable, random access

− Firewall holes are a problem
− Needed way to reuse existing connection to web server

l Needed to covertly sniff traffic
l Libhijack is born (discussed later)

Tuesday, February 21, 12

Setting the Stage
l Got a shell via CGI/Web App exploit

l Reliable way to get back in
l Apache good candidate

− Already listening for connections
l Modify apache process somehow to run a shell

when a special string is sent
− i.e. GET /shell HTTP/1.1
$ whoami
apache

l Need to hook certain functions in runtime

Tuesday, February 21, 12

Current Techniques
l Store shellcode on the stack

l Stack is non-executable
l Store shellcode at $eip

l Mucks up original code
l Store shellcode on the heap

l Heap is non-executable
l LD_PRELOAD?

l Process has already started

Tuesday, February 21, 12

Process Loading
l execve is called
l Kernel checks file existence, permissions, etc.
l Kernel loads RTLD (Runtime Linker (ld.elf.so))
l Kernel loads process meta-data, initializes

stack
l Meta-data loaded at 0x08048000 on Intel 32bit

Linux

Tuesday, February 21, 12

Runtime Linker
l Loads process into memory
l Loads dependencies (shared objects)

l DT_NEEDED entries in the .dynamic section
l Patches PLT/GOT for needed dynamic functions

l Calls initialization routines
l Finally calls main()

Tuesday, February 21, 12

ELF
l Executable and

Linkable Format
l PE-COFF based on

ELF
l Meta-data
l Tells RTLD what to

load and how to load
it

Tuesday, February 21, 12

ELF
l Describes where to load different parts of the

object file
l Process Header (PHDR) – Minimum one entry;

contains virtual address locations, access rights
(read, write, execute), alignment

l Section Header (SHDR) – Minimum zero entries;
describes the PHDRs; contains string table,
debugging entries (if any), compiler comments

l Dynamic Headers – Contains relocation entries,
stubs, PLT/GOT (jackpot)

Tuesday, February 21, 12

Process Tracing
l Ptrace – Debugging facility for Linux

l Kernel syscall
l GDB relies on ptrace
l Read/write from/to memory
l Get/set registers
l Debugee becomes child of debugger
l Destructive

− Original ptrace engineer evil, likely knew it could be
abused

Tuesday, February 21, 12

Allocating Memory
l We have arbitrary code to store. Where?
l Allocate memory in child

l Unlike Windows and OSX, we cannot allocate from
the parent process, the child must allocate

l Find “int 0x80” opcode
l Program's main code won't call kernel

l Calls library functions which call the kernel
− Libc!

l Find a library function that calls the kernel by
crawling the ELF meta-data

Tuesday, February 21, 12

Allocating Memory - Finding “int
0x80”

l Loop through the ELF headers
l Main ELF header contains pointer to PHDR
l PHDR contains a pointer to the Dynamic

headers
l Dynamic headers has a pointer to the GOT
l GOT[1] contains a pointer to the linkmap
l linkmap is a structure created/maintained by

RTLD and dlopen
l linkmap points to each shared object’s ELF

headers
l Loop through symbol table of each shared object

Tuesday, February 21, 12

Allocating Memory
l Parse ELF headers, loaded at 0x08048000

l Headers include lists of loaded functions
l Found “int 0x80” in a shared object
l Back up registers
l Set $eip to address of found “int 0x80” opcode
l Set up stack to call mmap syscall
l Continue execution until mmap finishes

Tuesday, February 21, 12

Injecting Shellcode
l After calling mmap

l $eax contains address of newly-allocated mapping
l Can write to it

− Even if mapping is marked non-writable (PROT_READ |
PROT_EXECUTE)

l Restore the backed-up registers
l Push return address

l Shellcode needs to know where to return to
l Decrement $esp by sizeof(unsigned long)
l Copy $eip to $esp

Tuesday, February 21, 12

Injecting Shellcode
l Write shellcode to newly-allocated mapping
l Set $eip to address of the shellcode
l Detach from the process
l Sit back, relax, and enjoy life
l But wait! There's more!

Tuesday, February 21, 12

Hijacking Functions
l Global Offset Table/Procedure Linkage Table

l Array of function addresses
l All referenced functions are in GOT/PLT
l PLT/GOT redirection

l Shellcode[“\x11\x11\x11\x11”] = @Function
l GOT[@Function] = @Shellcode

Tuesday, February 21, 12

Hijacking Functions
l Be careful

l Multiple shared objects implement functions of
the same name

l Different signature
l Make sure you target the correct function
l Know your target
l Set up a VM, mimicking the victim

l Same OS, same patch levels, etc.
l Cannot reliably remove hijack

Tuesday, February 21, 12

Injecting Shared Objects
l Why?

l Don't have to write a ton of shellcode
l Write in C, use other libraries, possibilities are

endless
l Two ways of doing it

l The cheating way: Use a stub shellcode that calls
dlopen()

l The real way: rewrite dlopen()

Tuesday, February 21, 12

The Cheating Way
l Allocate a new memory mapping
l Store auxiliary data in mapping

l .so path
l Name of the function to hijack
l Stub shellcode

l Stub shellcode will:
l Call dlopen and dlsym
l Replace GOT entry with entry found via dlsym

Tuesday, February 21, 12

The Cheating Way
l Advantages

l Easy
l Extendable
l Fast

l Disadvantages
l Entry in /proc/pid/maps
l Rely on stub shellcode

Tuesday, February 21, 12

The Real Way
l Reimplement dlopen

l Load dependencies (deps can be loaded via real
dlopen)

l Create memory maps
l Write .so data to new memory maps
l Patch into the RTLD
l Run init routines
l Hijack GOT

Tuesday, February 21, 12

The Real Way
l Advantages

l Completely anonymous
l Extensible

l Disadvantages
l Takes time to research and implement

Tuesday, February 21, 12

Shared Objects
l Shared objects can have dependencies
l Shared objects have own PLT/GOT

l Loop through Dynamic structures found in
linkmap
l Use same PLT/GOT redirection technique

against shared objects
l Even shared objects loaded via dlopen

Tuesday, February 21, 12

Libhijack
l Libhijack makes injection of arbitrary code and

hijack of dynamically-loaded functions easy
l Shared objects via the cheating method
l Inject shellcode in as little as eight lines of C code
l Full 32bit and 64bit support
l Support for FreeBSD/amd64
l Interest in porting to OSX

l Always looking for help
l https://github.com/lattera/libhijack

Tuesday, February 21, 12

Libhijack Release 0.6
l Version 0.6 released last night

l Port to FreeBSD/amd64
l Bug fixes

Tuesday, February 21, 12

Libhijack TODO
l Version 0.7

l Inject shared objects via “The Real Way”
l Looking for an adventure? Port to Android

l Always looking for help

Tuesday, February 21, 12

Prevention
l Make sure PLT/GOT entries point to correct lib

l How? Symbol table resolution?
l Use dtrace, disable ptrace

l From Solaris
l Non-destructive debugging

l Limit ptrace usage (apache user shouldn't use
it)

Tuesday, February 21, 12

Prevention
l Static binaries

l Major disk and memory usage
l Hypervisor?
l Grsec/PaX

l Only protects to a certain extent
l Static and dynamic profiling

l Watch for changes in GOT
l Make sure changes reflect static profile
l What about shared objects loaded via dlopen()?

Tuesday, February 21, 12

FreeBSD
l FreeBSD’s runtime linker

l Much different than GNU’s
l Much easier on the eyes

l link_map isn’t as big of a deal
l struct Struct_Obj_Entry

l RTLD hacker’s wet dream
l Contains every single calculation libhijack needs
l Located at GOT[1] -- same as GNU’s link_map
l Likely going to make hooking manually-

injected .so’s difficult

Tuesday, February 21, 12

Demo

Assembly loading .so

Tuesday, February 21, 12

exit(0);

Comments/questions
Thanks

Tuesday, February 21, 12

